Two Nonnegative Matrix Factorization Methods for Polyphonic Pitch Transcription
نویسندگان
چکیده
Polyphonic pitch transcription consists of estimating the onset time, duration and pitch of each note within a music signal. Adaptive signal models such as Nonnegative Matrix Factorization (NMF) appear well suited to this task, since they can provide a meaningful representation whatever instruments are playing. In this paper, we propose a simple transcription method using minimum residual loudness NMF, harmonic comb-based pitch identification and threshold-based onset/offset detection, and investigate a second method incorporating harmonicity constraints in the NMFmodel. Both methods are evaluated in the framework of MIREX 2007 1 .
منابع مشابه
Fast Bayesian Constrained Nmf for Polyphonic Pitch Transcription
This extended abstract presents a submission to the Music Information Retrieval Evaluation eXchange (MIREX) in the Multiple Fundamental Frequency Estimation & Tracking task. This submission is mainly based on our previous work on Nonnegative Matrix factorization (NMF) applied to music transcription. It relies on the harmonicity model we used in our previous participation in MIREX [1] and more r...
متن کاملAutomatic Music Transcription: from Monophonic to Polyphonic
Music understanding from audio track and performance is a key problem and a challenge for many applications ranging from: automated music transcoding, music education, interactive performance, etc. The transcoding of polyphonic music is a one of the most complex and still open task to be solved in order to become a common tool for the above mentioned applications. Techniques suitable for monoph...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملAutomatic music transcription using Non-negative matrix factorization
This paper proposes an effective method for the automatic music transcription in polyphonic music. The method consists of a combination of Non-negative Matrix Factorization (NMF), subharmonic summation method and onset detection algorithm. We decompose the magnitude spectrum of a music signal into the spectral component and the temporal information of every note using NMF. Then, the accurate pi...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کامل